Overview of Impaired Driving

Richard P. Compton, Ph.D. Director Behavioral Safety Research National Highway Traffic Safety Administration U.S. Department of Transportation

National Highway Traffic Safety Administration

MISSION: Save Lives, Prevent Injuries and Reduce Traffic-Related Crashes and Associated Costs

Alcohol Impaired Driving

Overview of Presentation:

- Effect of Alcohol on Driving Related Skills
- Relationship of BAC Level to Crash Risk
- Who, When, Where of Impaired Driving Crashes
- The US Experience Combating Impaired Driving
- Conclusions and Recommendations

R

A

Ν

к

1

2

Top 10 Leading Causes of Death in the United States for 2004, by Age Group¹

National Highway Traffic Safety Administration's National Center for Statistics and Analysis

Years of

Life

Lost²

Malignant

Neoplasms 23% (8,741,953)

Heart Disease

WWW.D	htm.gov

Infants

Under 1

Perinatal

Period

14,079

Congenital

Anomalies E 000

			Cause	and Number of	Deaths					Γ
Toddlers	Young Children	Children	Youth	Young Adults		Other Adults		Elderty	All Ageo	
1-3	4-7	8-15	16-20	21-24	25-34	35-44	45-64	65+	All Ages	
Congenital Anomalies 511	WV Traffio Crashes 478	MV Traffic Crashes 1,603	MV Traffic Crashes 5,914	MV Traffio Crashes 4,390	MV Traffic Crashes 6,834	Malignant Neoplasms 14,723	Malignant Neoplasms 146,476	Heart Disease 533,902	Heart Disease 652,496	
MV Traffic Crashes 398	Malignant Neoplasms 432	Malignant Neoplaarna 823	Homicide 2,409	Homici de 2,515	Suicide 5,074	Heart Disease 12,925	Heart Disease 101,169	Malignant Neoplasms 385,847	Malignant Neoplasms 553,889	
Accidental Drowning 386	Congenital Anomalies 193	Suicide 462	Suicide 1,972	Suicide 2,167	Homicide 4,496	Suicide 6,639	Diabetes 16,347	Stroke 130,539	Stroke 150,074	

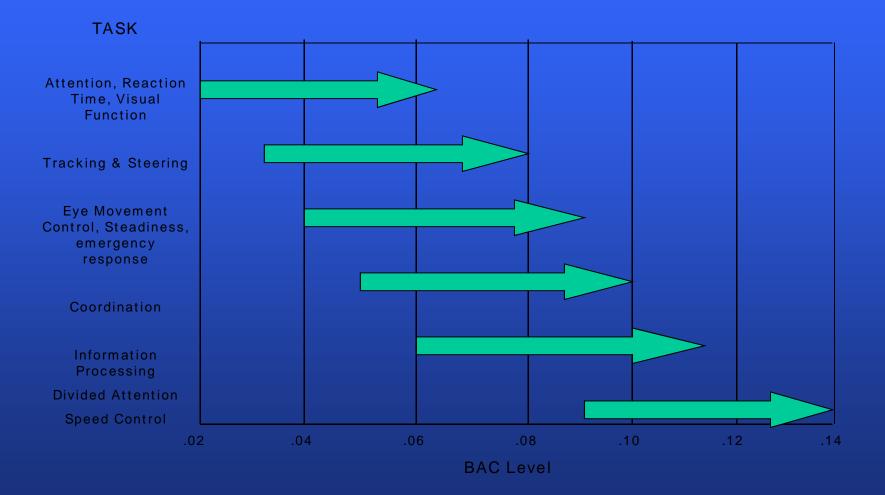
2	5,622	398	432	823	2,409	2,515	5,074	12,925	101,169	385,847	553,888	21% (7,912,765)
3	Heart Disease	Accidental	Congenital Anomalies	Suicide	Suicide	Suicide	Homicide	Suicide	Diabetes	Stroke	Stroke	MV Traffic Crashes
3	421	Drowning 386	193	462	1,972	2,167	4,496	6,639	16,347	130,539	150,074	5%(1,742,625)
4	Homicide	Homicide	Exposure to Smoke/Fire	Homicide	Accidental Poisoning	Accidental Poisoning	Accidental Poisoning	MV Traffic Croahea	Stroke	Chronic Lwc Resp. Dis.	Chronic Lwr. Resp. Dis.	Stroke
~	325	318	178	426	826	1,389	3,641	6,451	16,147	105,197	121,987	4% (1,616,418)
5	Influenza/ Pneumonia	Malignant Neoplasmo	Accidental	Congenital Anomalies	Malignant Neoplasms	Malignant Neoplasmo	Malignant Neoplasms	Accidental Poisoning	Chronic Lwc Resp. Dis.	Alzheimer's	Diabeteo	Chronic Lwr. Resp. Dis.
3	273	290	Drowning 131	311	759	823	3,633	6,444	15,265	65,313	73,138	4% (1,458,092)
6	Septicemia	Heart Disease	Homicide	Heart Disease	Heart Disease	Heart Disease	Heart Disease	HN	Chronic Liver Disease	Diabetes	Alzheimer's	Suicide
8	271	171	129	254	404	575	3,163	4,826	14,065	53,966	65,965	3% (1,151,559)
7	Nephritio/	Exposure to	Heart	Accidental	Accidental	Accidental	HN	Homicide	Suicide	Influenza/	Influenza/	Perinatal Period
'	Nephrosis 174	Smoke/Fire 165	Disease 66	Drowning 222	Drowning 331	Drowning 203	1,468	2,984	10,917	Pneumonia 52,760	Pneumonia 59,664	3% (1,099,806)
8	MV Traffio Creshes	Influenza/ Pneumonia	MV Nontraffic Crashes*	Exposure to Smoke/Fire	Congenital Anomalies	Congenital Anomalies	Diabetes	Chronic Liver Disease	MV Traffic Crashes	Nephritis/ Nephrosis	MV Traffie Crashes	Diabeteo
°	139	106	50	153	243	Anomales 183	599	2,799	10,024	35,106	43,432	3% (1,066,772)
	Stroke	MV Nonkraffic	Benign	MV Nontraffic	Accidental	HIV	Stroke	Stroke	Accidental	Septicemia	Nephritia/	Homicide
9	127	Crashes" 104	Neoplasms 43	Crashes* 133	Fallo 122	149	567	2,361	Poisoning 7,610	25,644	Nephrosis 42,480	2% (809,816)
10	Molignant	Septicemia	Septicemia	Chronic Lwr.	MV Nontraffic	Stroke	Congenital	Diabeteo	Nephritia/	Hypertension	Septicemia	Accidental
10	Neoplasms 74	73	39	Resp. Dis. 119	Crashes* 107	121	Anomalies 420	2,026	Nephrosis 6,090	Renal Dis. 19,619	33,373	Poisoning 216(809,122)
ALL	27,996	4,047	2,535	6,564	15,927	15,967	40,869	95,362	442,394	1,755,669	2,397,615	All Causes 100% (37,394,946)

When maked by specific ages, notor which coulds cause of death for ages 2 through De. Planter of year calculated based on maning life expectancy [2000 data from CDC] at time of death parameter calculated as a proportion of total years of file lost due to all causes of death. Planter of year calculated based on maning life expectancy [2000 data from CDC] at time of death parameter calculated as a proportion of total years of file lost due to all causes of death. Plant a total of top 10 causes of death. Almoster which could be contraft could be an any which could have be Planter of total years of death. Almoster which could be contraft could be an any which could have be all causes of death. Planter of total years of death. Almoster which could be contraft could be an any which could have be all causes of death. Planter of total years of death. Almoster which could be contraft could be an any which could have been applied by the set. Planter of the set of the set of the set of the set of the could be an an antiperiod of the set of the

Physiological Effects of Alcohol

Acute

- CNS Depressant
 - Drowsiness
 - Euphoria
 - Loss of inhibition
- Chronic
 - Liver Disease
 - Increased risk of mortality
 - Increased risk of death and severe injury in traffic crashes


Effect of Alcohol on Driving Related Behaviors

Laboratory experimentation

 Demonstrated numerous driving– related skills are degraded beginning at low BACs

Epidemiological research
 Estimated crash risk at various BACs

Effects of Alcohol on Driving Related Skills

Relationship Between Alcohol Use and Crash Involvement

- Crash risk estimated by comparing BACs of crash-involved drivers and similarly at risk non-crash-involved drivers
- Relative risk function determined
 - Likelihood of a driver at a specified BAC becoming involved in a crash compared to similar drivers under the same conditions at 0.00 BAC
- Borkenstein Grand Rapids Study

NHTSA Study of the Crash Risk of Alcohol Impaired Driving

- Improved understanding of the relative risk at various BACs
- Determine the BAC level at which elevated risk first occurs
- Determine whether relative risk changed over time
 - Change in driving and/or drinking environments

Approach

Crash involved driver sample

 Data collected on drivers involved in crashes of all severities

Control driver sample

 Two drivers at the same location, day of week, time of day, traveling in the same direction as a crash involved driver sampled a week after the crash

Study Locations

Long Beach, California
 June 1997 – September 1998
 Fort Lauderdale, Florida
 September 1998 – September 1999

Sampling Procedure

Crashes sampled during late afternoon, evening and nighttime hours

• 4 PM to 2 AM in Long Beach

• 5 PM to 3 AM in Fort Lauderdale

Data Collection Procedure

Drivers asked to answer questions

- Drinking habits
- Mileage
- Prior DUI arrests
- Fatigue
- Use of medicines
- Trip origin
- Demographics (age, income, education, marital status, etc.)

Drivers asked to provide breath sample

Crashes

2,871 crashes were sampled
1,419 in Long Beach
1,452 in Fort Lauderdale

Crash Severity

Crash Severity	Number of Crashes	Percent of Crashes
Property Damage	1,760	59.1%
Injury	603	21.0%
Fatality	19	0.7%
Hit-and-Run	546	19.0%
Missing Severity	7	0.2%
Total	2,935	100%

Crash-Involved and Control Drivers

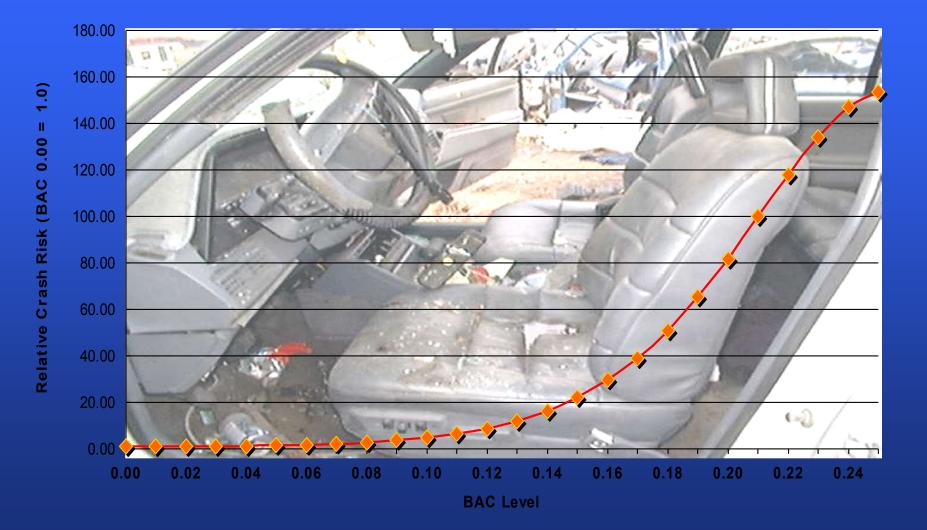
14,985 drivers were sampled • 4,919 crash-involved drivers 2,422 in Long Beach • 2,497 in Fort Lauderdale • 10,066 control drivers 5,006 in Long beach • 5,060 in For Lauderdale

Sample Participation Rates

Crash-involved drivers

- 81% participated
- 320 refused participation
- 603 hit-and-run
 - 94 arrested within 2 hours and provided a breath sample
- Control drivers
 - 98% participated

Relative Risk Models


Three models presented

- Unadjusted relative risk estimates
- Adjusted for demographic covariates
 - Age, gender, and other demographic and socioeconomic variables
- Adjusted relative risk estimates (demographic and socioeconomic variables and differential nonparticipation rates)

Relative Risk Models and Comparison with Grand Rapids Results

		Demographic	Final Adjusted	
BAC Level	Unadjusted	Covariates	Estimate	Grand Rapids *
.00	1.00	1.00	1.00	1.00
.01	.89	.94	1.03	.92
.02	.84	.92	1.03	.96
.03	.83	.94	1.06	.80
.04	.85	1.00	1.18	1.08
.05	.91	1.10	1.38	1.21
.06	1.01	1.25	1.63	1.41
.07	1.15	1.46	2.09	1.52
.08	1.34	1.74	2.69	1.88
.09	1.60	2.12	3.54	1.95
.10	1.95	2.62	4.79	
.11	2.41	3.28	6.41	5.93
.12	3.00	4.14	8.90	
.13	3.76	5.23	12.60	4.94
.14	4.72	6.60	16.36	
.15	5.90	8.31	22.10	10.44
.16	7.32	10.35	29.48	
.17	9.00	12.74	39.05	
.18	10.88	15.43	50.99	
.19	12.92	18.31	65.32	
.20	14.97	21.20	81.79	21.38
.21	16.88	23.85	99.78	
.22	18.44	25.99	117.72	
.23	19.43	27.30	134.26	
.24	19.68	27.55	146.90	
.25+	19.07	26.60	153.68	

Relative Risk Estimate

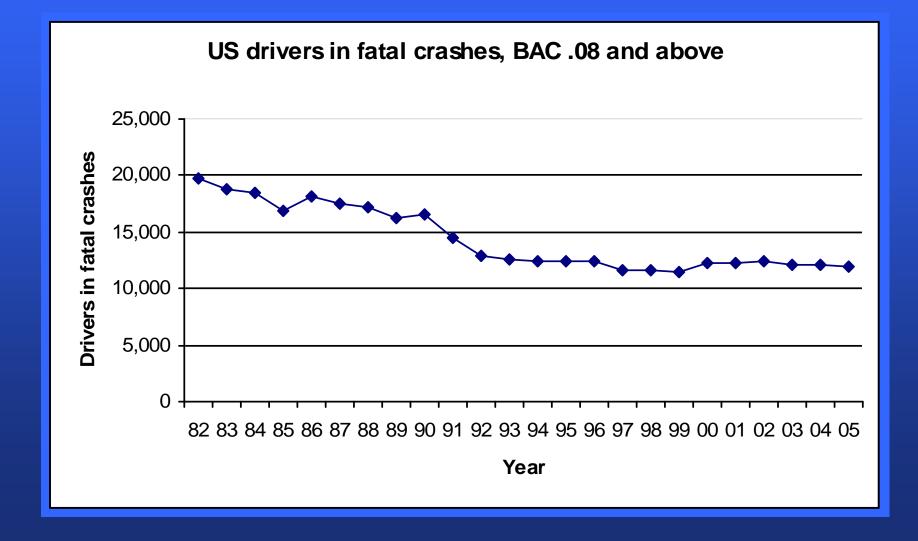
Conclusions

 Risk of drinking and driving has not changed since the 1960's
 The adjustments made to the univariate risk curve show that previous studies may have seriously underestimated the true crash risk produced by alcohol

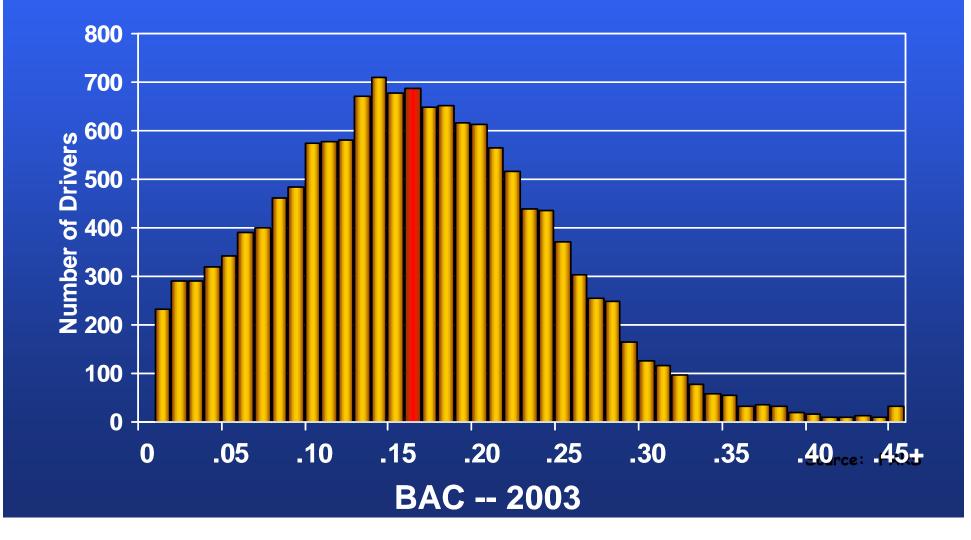

Conclusions

- No measurable elevated risk was found in this study below BACs of 0.04
- Sample size too small to allow for meaningful calculations of relative risk for certain subgroups
 - Youth
 - Heavy drinkers

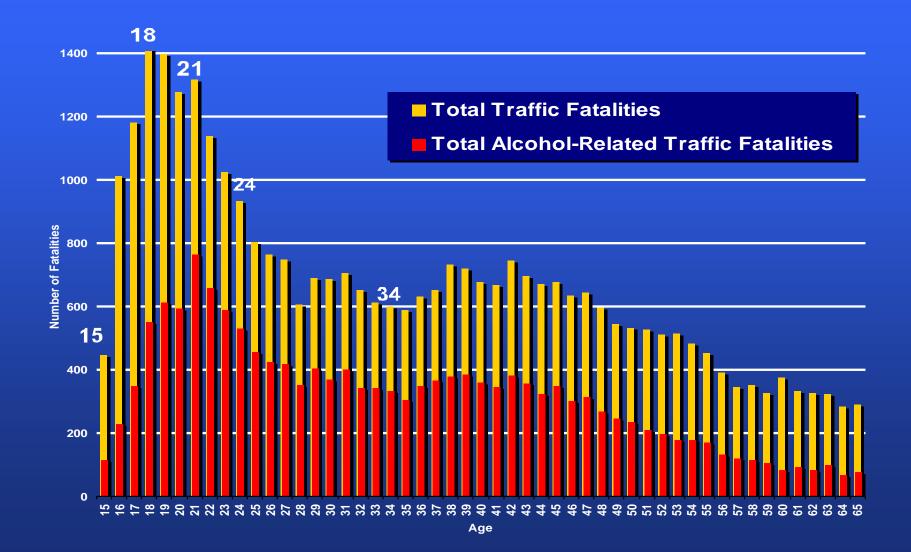
The US Experience

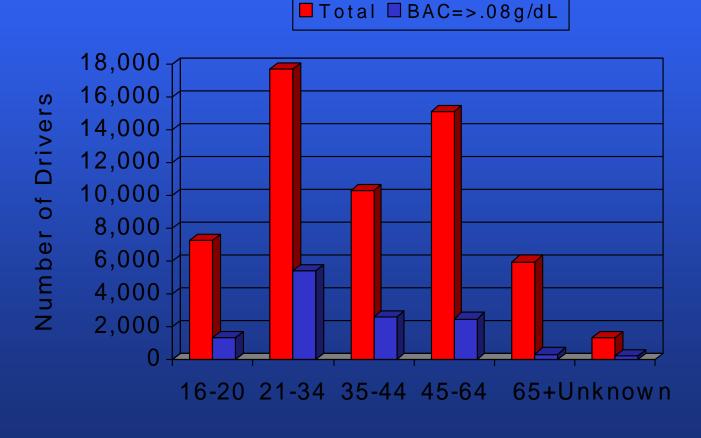

Trends in Alcohol-Related Crashes
Who, When, Where
Type of Crash

Alcohol-Related Fatalities & Rates: 1982 – 2006

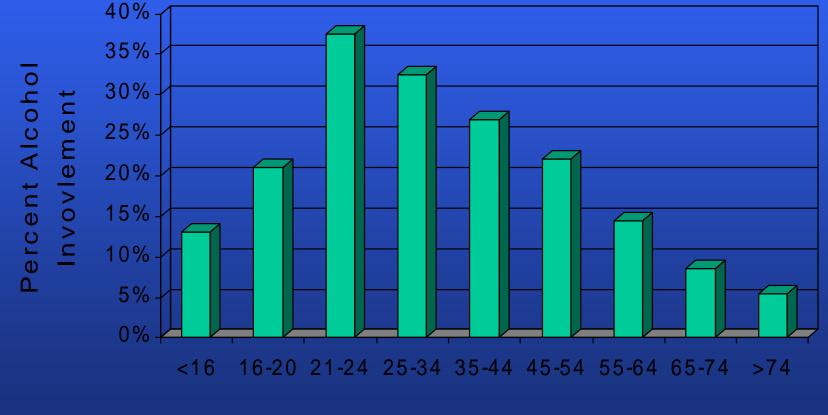


Source: FARS

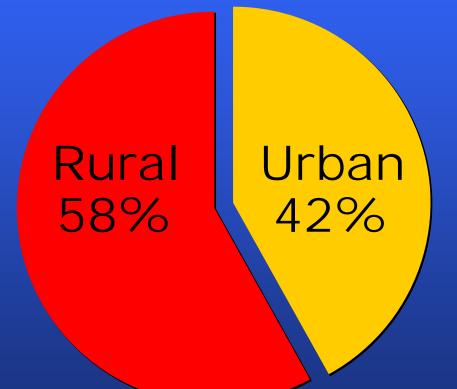

Trend in Number of Drivers in Fatal Crashes with BACs of >0.08 1982 -2005


Drivers in Fatal Crashes with Positive BACs

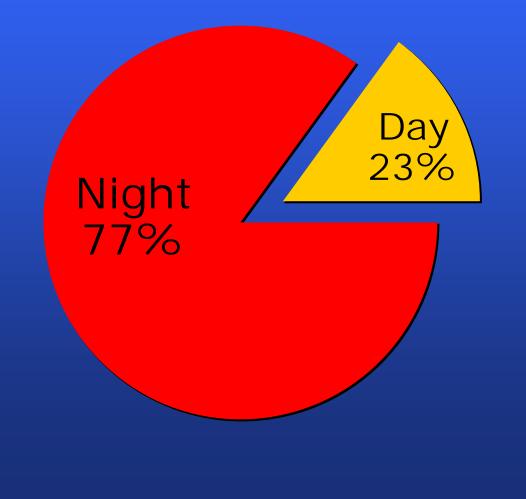
2002 Traffic Fatalities by Age Comparison



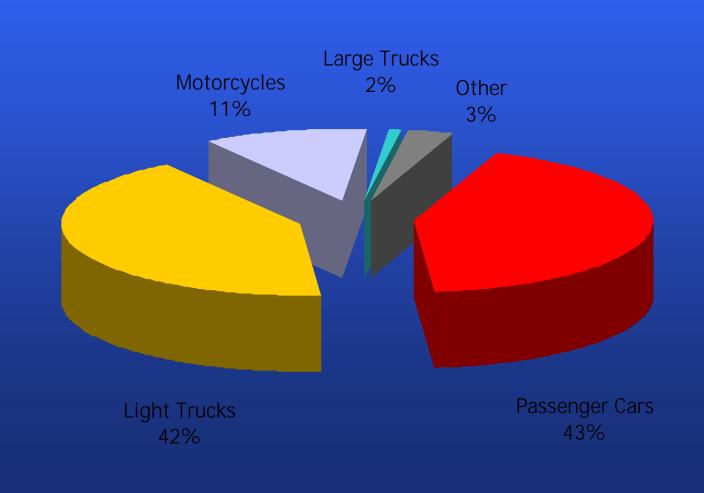
Drivers in Fatal and Alcohol-Related Crashes by Age

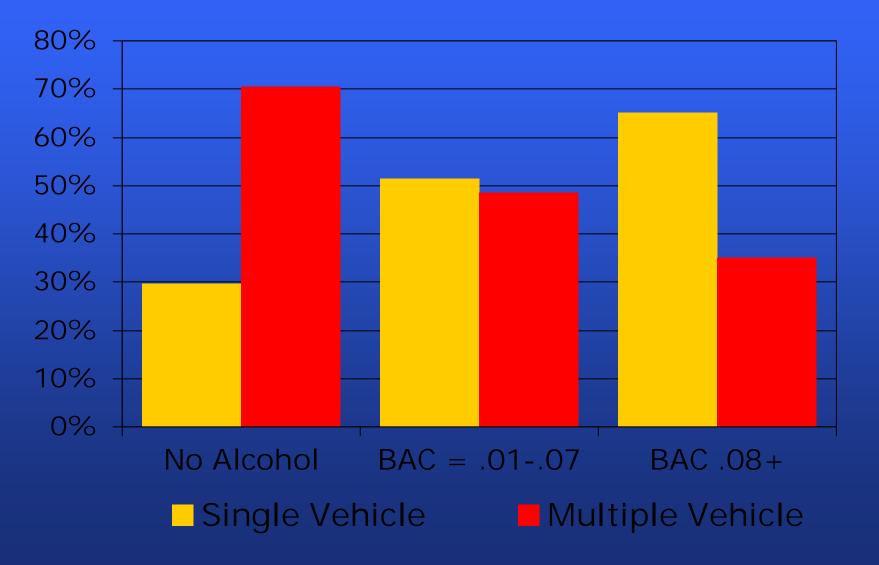

Age

Percent Alcohol-Related for Fatal Crashes By Driver Age

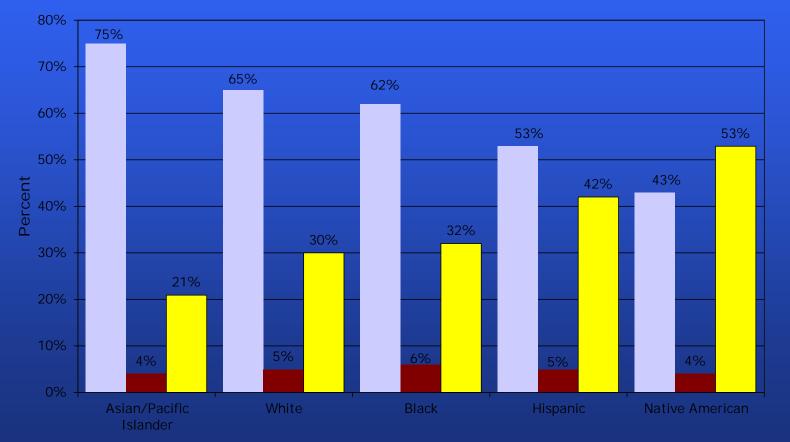


Driver Age (Years)

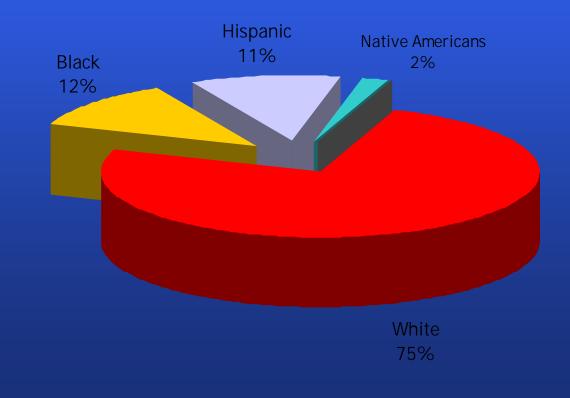

Alcohol-Related Fatalities by Location


Alcohol Related Fatalities by the Time of the Day

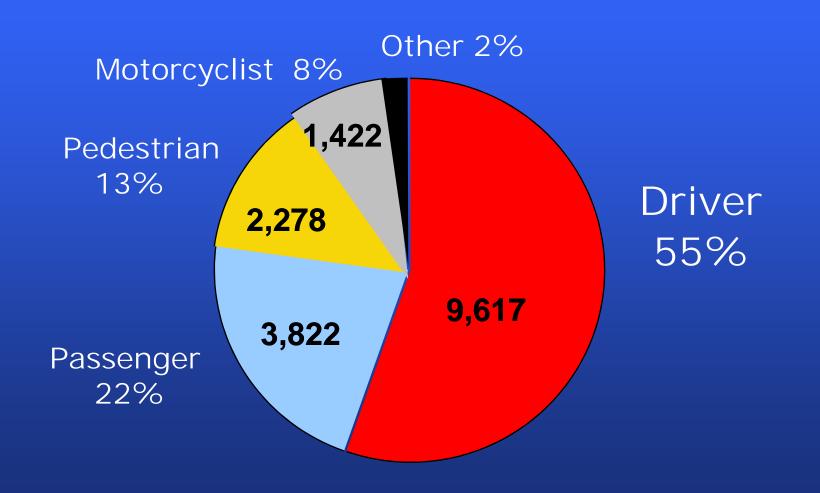
Alcohol Related Fatalities by Vehicle Type - 2006


Crash Type By Driver BAC

Source: 2006 FARS

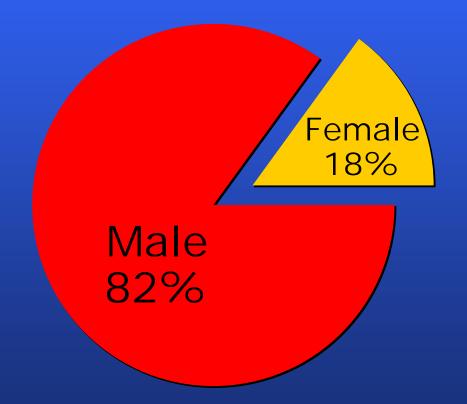

Ethnicity By Driver BAC in Fatal Crashes

No Alcohol <.08 g/dL BAC >=.08 g.dL BAC

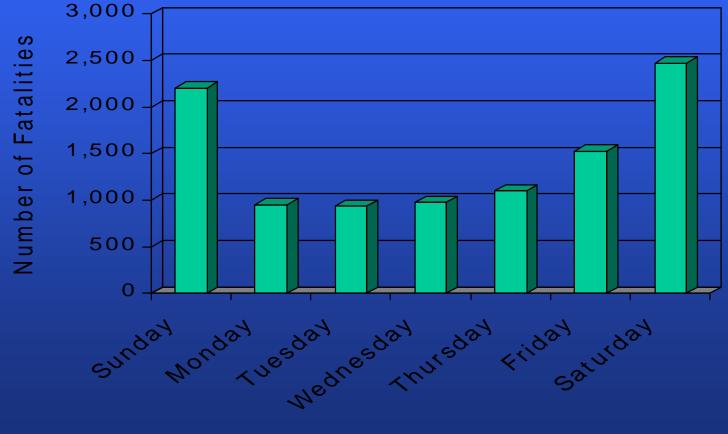


Race & Ethnicity

Alcohol Related Fatalities by Ethnicity

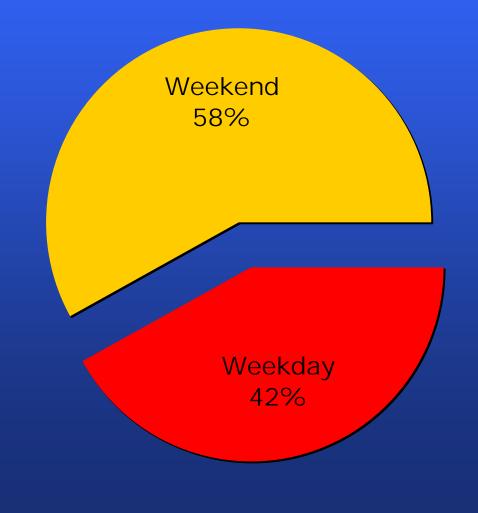


Fatalities in Alcohol Related Crashes by Role

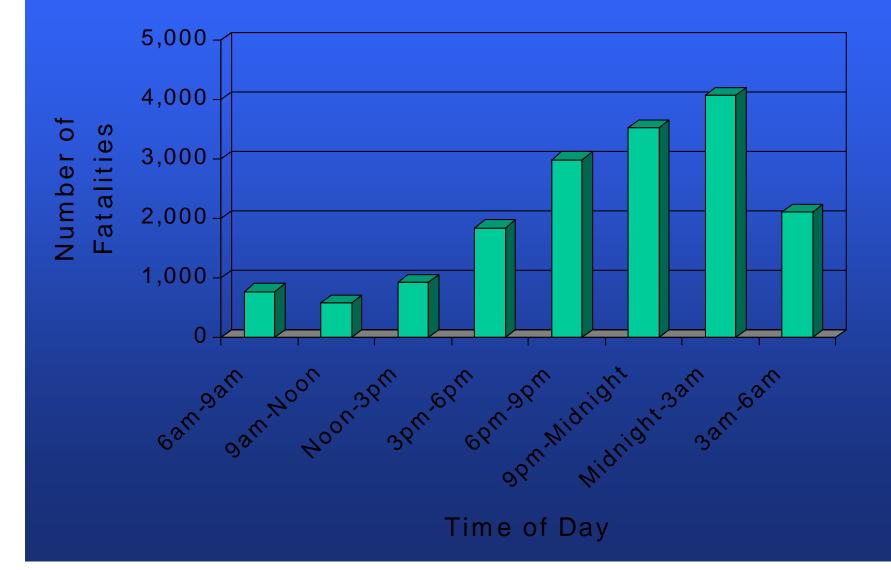


Source: 2002 Annual Report File

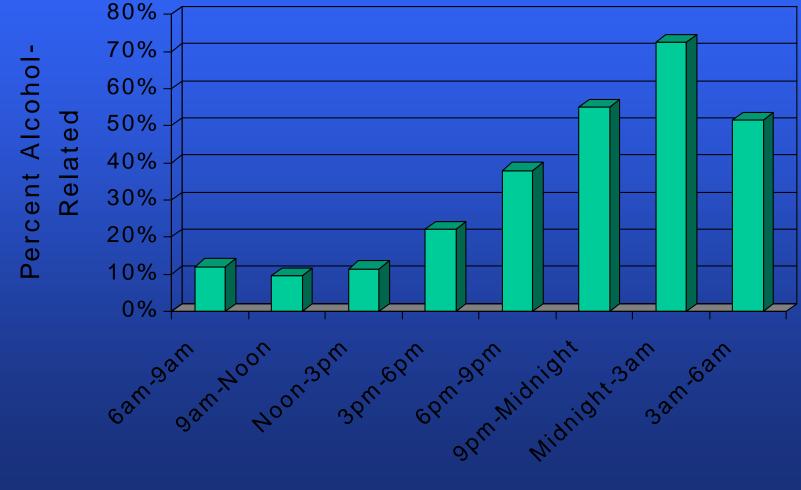
Drivers With BAC .08 and Above, by Gender - 2006



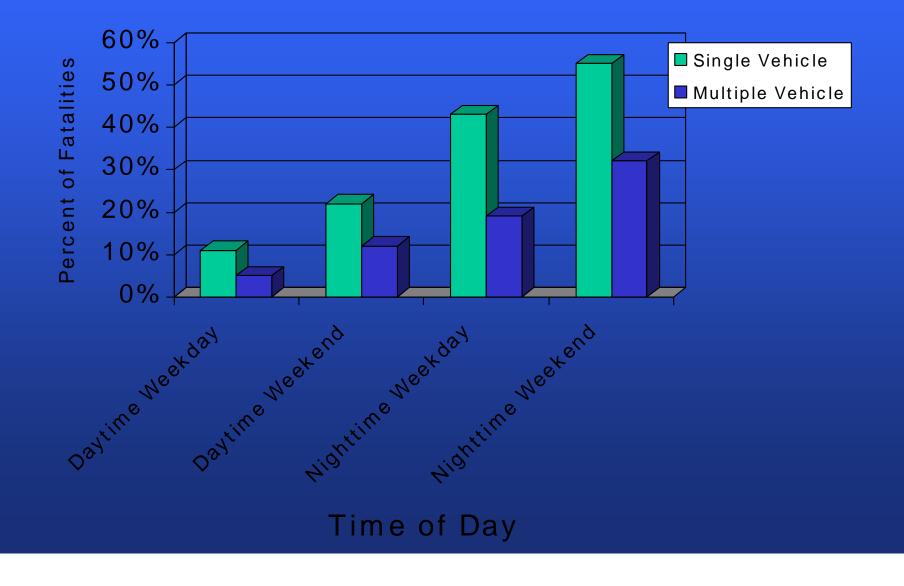
Alcohol-Related Fatalities By Day of Week



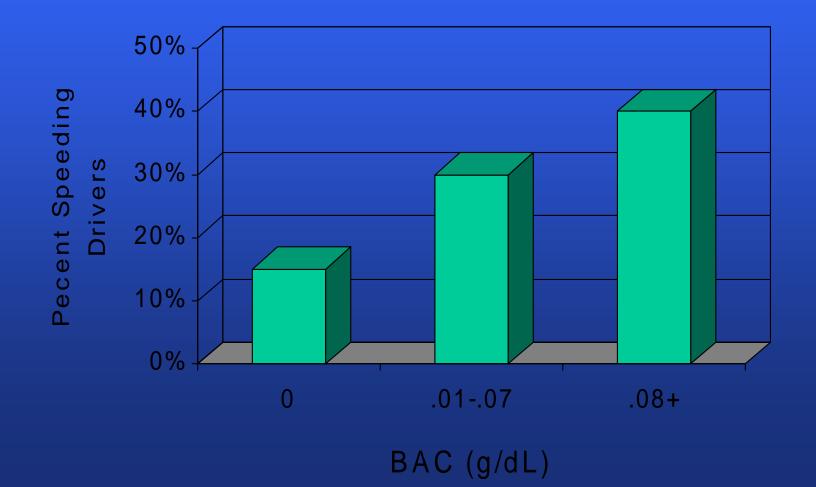
Day of Week


Alcohol-Related Fatalities By Weekday & Weekend - 2006

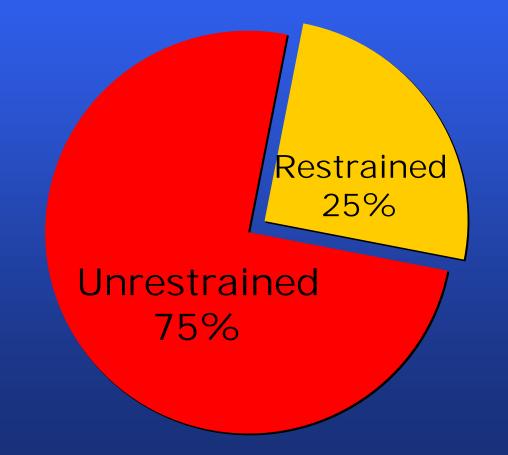
Alcohol-Related Fatalities By Time of Day

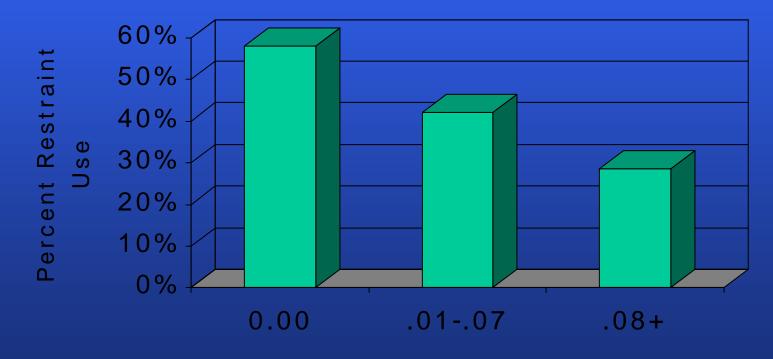


Percent Alcohol-Related Fatalities By Time of Day

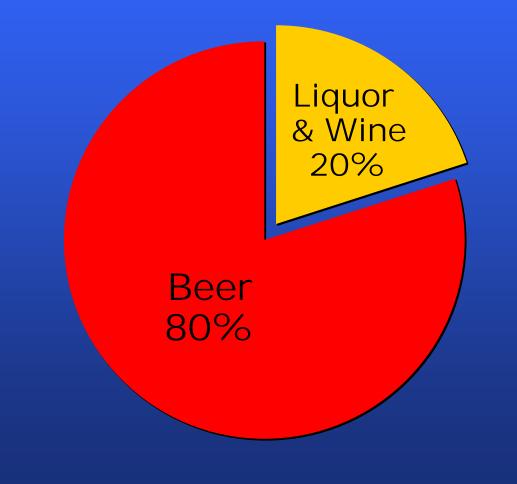


Time of Day

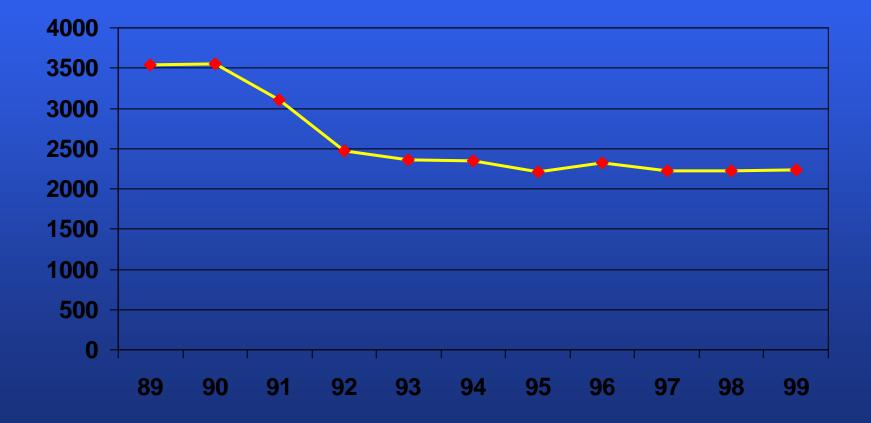

Percent A/R Fatalities By Time of Day, Day of Week and Crash Type


Percentage of Drivers in Fatal Crashes That Were Speeding By BAC Level

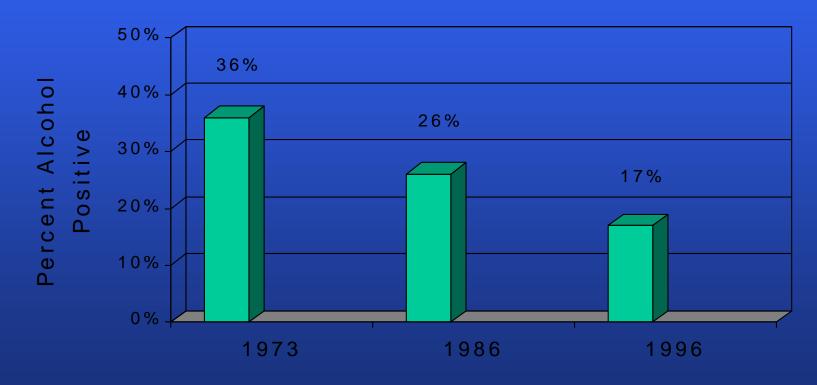
Restraint Use Among Fatally Injured Passenger Vehicle Drivers in Alcohol-Related Crashes



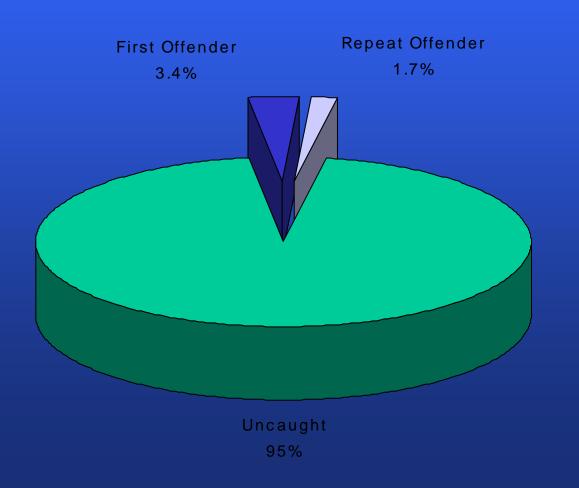
Percent Restraint Use of Fatally Injured Drivers By BAC Level



BAC Level (g/dL)


Alcohol Beverage of Choice for Impaired Drivers

Youth A/R Fatalities 1989-1999



Alcohol Positive Drivers on the Road Weekend Evenings National Roadside Survey

Year

Estimated % of DWI's Caught (One Year Period)

Programs To Reduce Alcohol-Related Crashes

Major Approaches:

- Prevention
- Intervention
- Deterrence
 - Enforcement
 - Laws and Sanctions
- Rehabilitation/Treatment
- Technology

Prevention

Mass Media PI&E
 School Based Alcohol Education
 Environmental Approaches

Mass Media – PI& E

Potential for population-wide impact

- Public service announcements
- Contributes to impact of other programs

Evidence suggests little effect as a stand alone program, but enhances other programs by raising awareness

Alcohol Education

- Major obstacles to population-wide impact
- Normative, peer, resistance training
- Evidence of self-reported impact in classroom and on campus
- No evidence of crash reduction impact

Environmental Approaches

Strong potential for population-wide effect

- Examples:
 - Pricing
 - Taxation
 - Reduction in Advertising
 - Host Liability Laws
 - Responsible Beverage Service
 - Server Training
 - Liquor Law Enforcement Stings, Decoys, Cops in Shops
 - Reduction in "Happy Hours"

Environmental Approaches

- Some programs have shown small reductions in crashes
- Consistent findings that advertising and availability can affect consumption
- Very little evidence of crash reductions

Intervention

Designated Driver Programs
Ride Service Programs
Personal Intervention
Screening and Brief Intervention at Hospital Settings

Designated Driver Programs

Two types of programs: Population based campaigns Community based at drinking establishments Limited implementation Abstinence versus least number of drinks No Evidence for reduced A/R crashes Self-reported use of designated drivers Self-reported drinking and driving

Ride Service Programs

Community based programs

- Free ride home
 - Shared vans
 - Taxi
 - Tow trucks
 - "Ask Jeeves"

No evidence for crash reduction

Personal Intervention

Mass Media Campaigns
"Friends Don't Let Friends Drive Drunk"
Take the Keys
Social Marketing programs
No Evidence for Crash Reductions

Brief Screening and Intervention

Screening for alcohol abuse

- Hospital emergency rooms
- Short set of questions

Specific information about where to receive counseling

Deterrence

Law Enforcement
Laws
Sanctions

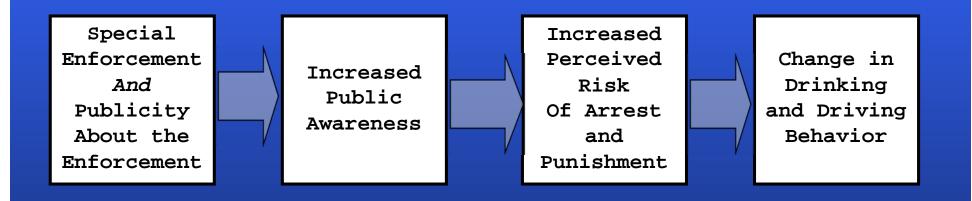
Deterrence Programs

- General Deterrence Theory
 Examples of Successful Programs
 - Binghamton, NY
 - Experimental Evaluation of Sobriety Checkpoint Programs
 - Checkpoint Tennessee

General Deterrence Theory

Classic Deterrence Theory

- Human behavior is rational
- Deviant behavior can be deterred by the prospect of punishment if it is:
 - Certain
 - Swift
 - Severe
- Policing and punishment serve:
 - Retribution and incapacitation
 - Discouraging would-be offenders from engaging in prohibited acts


Types of Deterrence

Specific Deterrence

Prevention of repeat offenses

- Incarceration Fines
- License Suspension
- Vehicle Sanctions
- General Deterrence
 - Prevention of prohibited behavior
 - Increase perceived risk of detection, arrest, and severe punishment

General Deterrence Model Applied to Impaired Driving

Sobriety Checkpoint Program – Binghamton, NY

 Designed to reduce alcohol-impaired driving and increase seat belt use
 Publicized Use of Sobriety Checkpoints and Passive Alcohol Sensors

- Two year program
 - Fall 1988 Fall 1990

Binghamton, NY

Small city (population 55,860) Distinct media market Three TV stations Several radio stations Daily newspaper Illegal Per Se .10 BAC law Primary Seat Belt law

Binghamton, NY - Checkpoints

Conducted during late night hours
 Thursday, Friday, and Saturday nights:

 9:30 p.m. – 11:45 p.m.
 0r
 12:30 p.m. - 2:45 a.m.

 Passive alcohol sensors used to screen drivers

Binghamton, NY - Checkpoints

- 72 Checkpoints conducted in six sets:
 - Baseline 1988 (Oct Nov)
 - Fall 1988 (Nov Dec)
 - Spring 1989 (Apr Jun)
 - Fall 1989 (Oct Nov)
 - Spring 1990 (Apr Jul)
 - Fall 1990 (Oct Nov)

Binghamton, NY Publicity

Earned media

- Press conferences
- Television, radio, and newspaper coverage
- Public service announcements
 - Mayor, police chief, passive alcohol sensor
 - Posters
- Paid media
 - Local network television and cable channels

Binghamton, NY Evaluation Approach

Impaired driving

Change in proportion of drinking drivers baseline vs 24 month program period

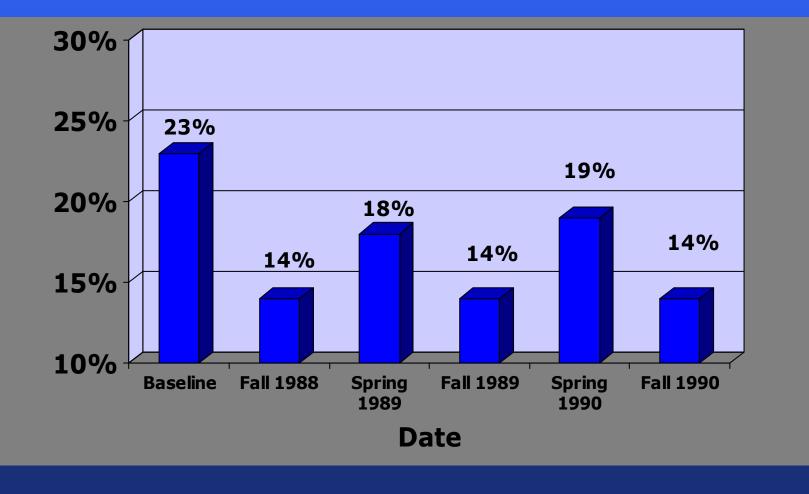
Crash rates

- Changes in injury producing and latenight crashes
- Public awareness
 - Telephone surveys before and during program

Binghamton, NY Changes in Alcohol-Impaired Driving

Measured Driver BAC

- Arrested drivers
 - Evidential breath tests
- All other drivers
 - Researcher requested voluntary breath test
 - Consent 93%


Binghamton, NY Crash Rates

- Examined crash trends 1986 through 1990
- 2 years before compared to 2 program years
 - Monthly crashes
 - Injury crashes
 - Late night crashes

Binghamton, NY Results: Impaired Driving

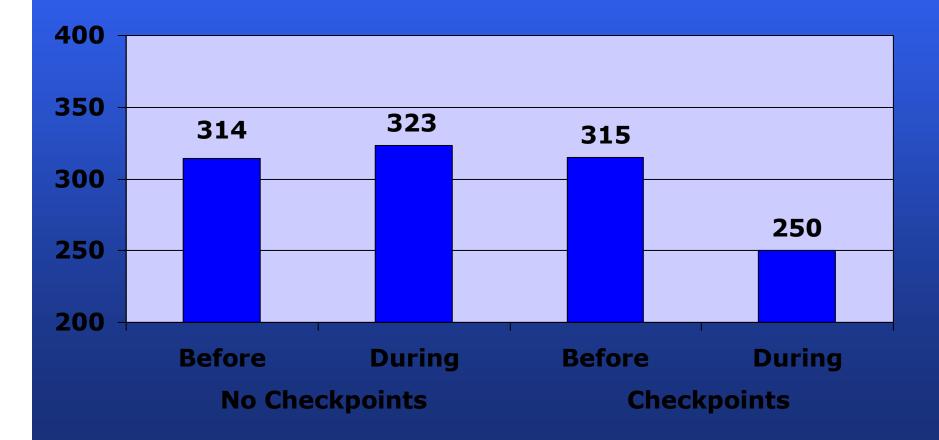
- The percentage of drinking drivers declined 39% from Fall 1988 to Fall 1990
- Greatest effects on drivers with BAC's < .10</p>
- No difference
 - Gender, Age, Trip Length

Binghamton, NY Percentage of Drinking Drivers (BAC > .01)

Binghamton, NY Awareness

Perceptions of changes in the enforcement of impaired driving increased

• Baseline – 49%


- Program 1 74%
- Program 2 59%

Perceptions of risk of arrest increased

Binghamton, NY Crash Trends

- Two years before program compared to program years
- Months with no checkpoints compared to months with checkpoints
 - No Checkpoints
 - Injury crashes up 7%
 - Late night crashes up 3%
 - With Checkpoints
 - Injury crashes down 16%
 - Late night crashes down 21%

Binghamton, NY Number of Late-Night Crashes

Binghamton, NY Crash Trends

Trend analysis (using all crashes as a comparison series) showed a statistically significant decrease in:
Injury crashes (24%)
Late-night crashes (23%)

Experimental Evaluation of Sobriety Checkpoint Programs

- Study conducted to evaluate the effectiveness of sobriety checkpoints and "roving patrols" in reducing alcohol-related crashes
- Conducted in six communities in CA
- 9 month program (August 1992 April 1993)

CA Sobriety Checkpoint Program Enforcement Programs

Sobriety Checkpoints:
Staffing levels

Low (3 – 5 officers)
High (6 –12 officers)

Mobility

One location (4 hours, 10:30 – 2:30)
Three locations (1 hour at each, 10:30 –

2:30)

CA Sobriety Checkpoint Program Checkpoint Program Variations

Four communities conducted 18 sobriety checkpoints (Modesto, Santa Rosa, Ventura, Visalia):

- Twice a month for 9 months
 - High staffing Low mobility
 - High staffing High mobility
 - Low Staffing Low mobility
 - Low Staffing High mobility

CA Sobriety Checkpoint Program Roving Patrols and Control

- One community conducted "Roving DWI Patrols" (Ontario)
 - Special DWI squad on Thursday, Friday, Saturday nights
 - Level of effort equal to conducting high staffing level sobriety checkpoints
 - Patrolled areas with high DWI crashes or arrests
- Control community (Santa Barbara)
 - No special DWI enforcement effort or publicity

CA Sobriety Checkpoint Program Publicity

- Traffic safety program support committees formed in each community
- Publicity efforts included:
 - Press conferences
 - Media events
 - Posters, Brochures, and billboards
 - Public Speakers
 - TV and radio public service announcements

CA Sobriety Checkpoint Program Evaluation

- Attitudes and awareness measured by DMV surveys conducted monthly (starting two months before program and continuing during program)
- Results:
 - Public awareness elevated in all 5 test communities
 - Checkpoint program communities average 80%
 - Roving patrol community doubled to 30%
 - Public awareness unchanged in control community

CA Sobriety Checkpoint Program Program Impact on Crashes

- Examined changes in alcohol-related fatal and injury crashes (BAC > .01%)
- Compared the four checkpoint programs and the "roving patrol" program, to the control community and the rest of the State
- Interrupted time series analysis conducted

CA Sobriety Checkpoint Program Results: Crashes

- Statewide decline in alcohol-related crashes during this time period
- The four checkpoint communities experienced an additional 28% decline
- The "roving patrol" community experienced an additional 5% decline
- The control community experienced no change in the decline in crashes

CA Sobriety Checkpoint Program Checkpoint Differences

No significant differences were found in effectiveness between the four sobriety checkpoint programs

Checkpoint Tennessee

Statewide year-long program of highly publicized sobriety checkpoints

- April 1994 March 1995
- Checkpoints conducted every weekend
 - Four sets of three checkpoints across the state
 - On five weekends checkpoints were conducted in each of the 95 counties

Checkpoint Tennessee Checkpoint Program

- Coordinated by Tennessee Highway Patrol with support from local law enforcement agencies
 - Used special vans, lights, signs,video taping, on-site evidential breath testing, passive alcohol sensors and SFST's to detect impaired drivers
 - Non-blitz checkpoints were smaller scale

Checkpoint Tennessee Checkpoints Conducted

- 882 checkpoints conducted during project period
- 10 15 checkpoints a year conducted on average during five previous years
- Selected statistics:
 - 144,299 drivers checked
 - 773 arrested for DUI or DWI
 - 201 arrested for drug violations
 - 84 for youth offender violations
 - 35 felony arrests
 - 1,517 cited for seat belt or child restraint

Checkpoint Tennessee Publicity

- Special cooperation obtained from a TV station in each major market in the state to publicize the program
- Earned media coverage:
 - Hard news coverage from other outlets
 - Statewide billboard campaign
 - Press releases covering checkpoints and results
- TV, radio and print media coverage was extensive during the 12 month operational phase of the program

Checkpoint Tennessee Awareness Measured Three waves of DMV surveys conducted to measure awareness and attitudes March 1994 – baseline Summer 1994 – 4 months Spring 1995 – project completion Analysis showed awareness increased

Checkpoint Tennessee Impact

Impaired driving fatal crashes analyzed:

- Interrupted time series analysis of crashes involving a driver with a BAC of .10% or higher 1988 – 1996
- Five surrounding States (KY, GA, AL, MS, LO) used as comparison
- 20.4% reduction in fatal crashes for the year in Tennessee
 - 9 crashes per month
- Impaired driving fatal crashes increased in the comparison States

Summary

High visibility enforcement conducted weekly can raise perceived risk of detection and arrest

Result in reductions in impaired driving and alcohol–related crashes of 5% - 20%

Characteristics of Successful Programs

Frequent (weekly) enhanced impaired driving enforcement (sobriety checkpoints or saturation patrols)

- Intensive
- Sustained
- Highly publicized
- Visible

Laws

- Illegal Per Se
- Administrative License Revocation (ALR)
- Lower BAC Limits (.08 Illegal Per Se)
- Minimum Drinking Age (MDA)
- Zero Tolerance for Youth
- Lower BAC Limits for Offenders
- Tiered Sanctions High BAC

Sanctions

- License Suspension/Revocation
- Jail
 - Home Detention
- Fines
- Education
 - DWI School
- Vehicle Sanctions
 - Impoundment
 - Forfeiture
 - Vehicle Plate Impoundment
- Alcohol Ignition Interlocks

Rehabilitation and Treatment

Post Conviction:
Screening for Alcohol Abuse

Before Sentencing

Alcohol Treatment
Intense Supervision and Probation
DWI School

Vehicle Technology

Advanced Vehicle Technology to Reduce Impaired Driving

- Government Industry Initiative
- Design vehicle to Prevent Impaired Driving
 - Interlock based on BAC
 - Performance monitoring

Conclusions

- Evidence Based Practice Requires Good Quality Data
 - Surveillance Systems Critical
- Evidence on Effectiveness of Countermeasure Programs Suggests Maximum Short-term Impact from High-Visibility Enforcement
 - Random Breath Testing
 - Sobriety Checkpoints
 - Sustained
 - Enforcement Oriented Publicity